A Label-Enhanced Text Classification Model
نویسندگان
چکیده
منابع مشابه
Multi Label Text Classification through Label Propagation
Classifying text data has been an active area of research for a long time. Text document is multifaceted object and often inherently ambiguous by nature. Multi-label learning deals with such ambiguous object. Classification of such ambiguous text objects often makes task of classifier difficult while assigning relevant classes to input document. Traditional single label and multi class text cla...
متن کاملGlobal Model for Hierarchical Multi-Label Text Classification
The main challenge in hierarchical multilabel text classification is how to leverage hierarchically organized labels. In this paper, we propose to exploit dependencies among multiple labels to be output, which has been left unused in previous studies. To do this, we first formalize this task as a structured prediction problem and propose (1) a global model that jointly outputs multiple labels a...
متن کاملTowards Multi Label Text Classification through Label Propagation
Classifying text data has been an active area of research for a long time. Text document is multifaceted object and often inherently ambiguous by nature. Multi-label learning deals with such ambiguous object. Classification of such ambiguous text objects often makes task of classifier difficult while assigning relevant classes to input document. Traditional single label and multi class text cla...
متن کاملMulti-label Text Classification Using Multinomial Models
Traditional approaches to pattern recognition tasks normally consider only the unilabel classification problem, that is, each observation (both in the training and test sets) has one unique class label associated to it. Yet in many real-world tasks this is only a rough approximation, as one sample can be labeled with a set of classes and thus techniques for the more general multi-label problem ...
متن کاملMulti-Task Label Embedding for Text Classification
Multi-task learning in text classification leverages implicit correlations among related tasks to extract common features and yield performance gains. However, most previous works treat labels of each task as independent and meaningless onehot vectors, which cause a loss of potential information and makes it difficult for these models to jointly learn three or more tasks. In this paper, we prop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2020
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1624/2/022024